Copied to
clipboard

G = D4×C33order 216 = 23·33

Direct product of C33 and D4

direct product, metabelian, nilpotent (class 2), monomial

Aliases: D4×C33, C6210C6, C6.12C62, C4⋊(C32×C6), C123(C3×C6), (C3×C12)⋊9C6, (C3×C62)⋊1C2, (C32×C12)⋊7C2, C2.1(C3×C62), C222(C32×C6), (C32×C6).31C22, (C2×C6)⋊3(C3×C6), (C3×C6).36(C2×C6), SmallGroup(216,151)

Series: Derived Chief Lower central Upper central

C1C2 — D4×C33
C1C2C6C3×C6C32×C6C3×C62 — D4×C33
C1C2 — D4×C33
C1C32×C6 — D4×C33

Generators and relations for D4×C33
 G = < a,b,c,d,e | a3=b3=c3=d4=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 280 in 224 conjugacy classes, 168 normal (8 characteristic)
C1, C2, C2, C3, C4, C22, C6, C6, D4, C32, C12, C2×C6, C3×C6, C3×C6, C3×D4, C33, C3×C12, C62, C32×C6, C32×C6, D4×C32, C32×C12, C3×C62, D4×C33
Quotients: C1, C2, C3, C22, C6, D4, C32, C2×C6, C3×C6, C3×D4, C33, C62, C32×C6, D4×C32, C3×C62, D4×C33

Smallest permutation representation of D4×C33
On 108 points
Generators in S108
(1 56 66)(2 53 67)(3 54 68)(4 55 65)(5 108 96)(6 105 93)(7 106 94)(8 107 95)(9 76 71)(10 73 72)(11 74 69)(12 75 70)(13 37 104)(14 38 101)(15 39 102)(16 40 103)(17 60 79)(18 57 80)(19 58 77)(20 59 78)(21 33 100)(22 34 97)(23 35 98)(24 36 99)(25 91 87)(26 92 88)(27 89 85)(28 90 86)(29 43 82)(30 44 83)(31 41 84)(32 42 81)(45 64 49)(46 61 50)(47 62 51)(48 63 52)
(1 85 61)(2 86 62)(3 87 63)(4 88 64)(5 10 33)(6 11 34)(7 12 35)(8 9 36)(13 18 41)(14 19 42)(15 20 43)(16 17 44)(21 96 72)(22 93 69)(23 94 70)(24 95 71)(25 52 54)(26 49 55)(27 50 56)(28 51 53)(29 102 78)(30 103 79)(31 104 80)(32 101 77)(37 57 84)(38 58 81)(39 59 82)(40 60 83)(45 65 92)(46 66 89)(47 67 90)(48 68 91)(73 100 108)(74 97 105)(75 98 106)(76 99 107)
(1 81 6)(2 82 7)(3 83 8)(4 84 5)(9 87 40)(10 88 37)(11 85 38)(12 86 39)(13 72 92)(14 69 89)(15 70 90)(16 71 91)(17 24 48)(18 21 45)(19 22 46)(20 23 47)(25 103 76)(26 104 73)(27 101 74)(28 102 75)(29 106 53)(30 107 54)(31 108 55)(32 105 56)(33 64 57)(34 61 58)(35 62 59)(36 63 60)(41 96 65)(42 93 66)(43 94 67)(44 95 68)(49 80 100)(50 77 97)(51 78 98)(52 79 99)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)
(2 4)(5 7)(10 12)(13 15)(18 20)(21 23)(26 28)(29 31)(33 35)(37 39)(41 43)(45 47)(49 51)(53 55)(57 59)(62 64)(65 67)(70 72)(73 75)(78 80)(82 84)(86 88)(90 92)(94 96)(98 100)(102 104)(106 108)

G:=sub<Sym(108)| (1,56,66)(2,53,67)(3,54,68)(4,55,65)(5,108,96)(6,105,93)(7,106,94)(8,107,95)(9,76,71)(10,73,72)(11,74,69)(12,75,70)(13,37,104)(14,38,101)(15,39,102)(16,40,103)(17,60,79)(18,57,80)(19,58,77)(20,59,78)(21,33,100)(22,34,97)(23,35,98)(24,36,99)(25,91,87)(26,92,88)(27,89,85)(28,90,86)(29,43,82)(30,44,83)(31,41,84)(32,42,81)(45,64,49)(46,61,50)(47,62,51)(48,63,52), (1,85,61)(2,86,62)(3,87,63)(4,88,64)(5,10,33)(6,11,34)(7,12,35)(8,9,36)(13,18,41)(14,19,42)(15,20,43)(16,17,44)(21,96,72)(22,93,69)(23,94,70)(24,95,71)(25,52,54)(26,49,55)(27,50,56)(28,51,53)(29,102,78)(30,103,79)(31,104,80)(32,101,77)(37,57,84)(38,58,81)(39,59,82)(40,60,83)(45,65,92)(46,66,89)(47,67,90)(48,68,91)(73,100,108)(74,97,105)(75,98,106)(76,99,107), (1,81,6)(2,82,7)(3,83,8)(4,84,5)(9,87,40)(10,88,37)(11,85,38)(12,86,39)(13,72,92)(14,69,89)(15,70,90)(16,71,91)(17,24,48)(18,21,45)(19,22,46)(20,23,47)(25,103,76)(26,104,73)(27,101,74)(28,102,75)(29,106,53)(30,107,54)(31,108,55)(32,105,56)(33,64,57)(34,61,58)(35,62,59)(36,63,60)(41,96,65)(42,93,66)(43,94,67)(44,95,68)(49,80,100)(50,77,97)(51,78,98)(52,79,99), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108), (2,4)(5,7)(10,12)(13,15)(18,20)(21,23)(26,28)(29,31)(33,35)(37,39)(41,43)(45,47)(49,51)(53,55)(57,59)(62,64)(65,67)(70,72)(73,75)(78,80)(82,84)(86,88)(90,92)(94,96)(98,100)(102,104)(106,108)>;

G:=Group( (1,56,66)(2,53,67)(3,54,68)(4,55,65)(5,108,96)(6,105,93)(7,106,94)(8,107,95)(9,76,71)(10,73,72)(11,74,69)(12,75,70)(13,37,104)(14,38,101)(15,39,102)(16,40,103)(17,60,79)(18,57,80)(19,58,77)(20,59,78)(21,33,100)(22,34,97)(23,35,98)(24,36,99)(25,91,87)(26,92,88)(27,89,85)(28,90,86)(29,43,82)(30,44,83)(31,41,84)(32,42,81)(45,64,49)(46,61,50)(47,62,51)(48,63,52), (1,85,61)(2,86,62)(3,87,63)(4,88,64)(5,10,33)(6,11,34)(7,12,35)(8,9,36)(13,18,41)(14,19,42)(15,20,43)(16,17,44)(21,96,72)(22,93,69)(23,94,70)(24,95,71)(25,52,54)(26,49,55)(27,50,56)(28,51,53)(29,102,78)(30,103,79)(31,104,80)(32,101,77)(37,57,84)(38,58,81)(39,59,82)(40,60,83)(45,65,92)(46,66,89)(47,67,90)(48,68,91)(73,100,108)(74,97,105)(75,98,106)(76,99,107), (1,81,6)(2,82,7)(3,83,8)(4,84,5)(9,87,40)(10,88,37)(11,85,38)(12,86,39)(13,72,92)(14,69,89)(15,70,90)(16,71,91)(17,24,48)(18,21,45)(19,22,46)(20,23,47)(25,103,76)(26,104,73)(27,101,74)(28,102,75)(29,106,53)(30,107,54)(31,108,55)(32,105,56)(33,64,57)(34,61,58)(35,62,59)(36,63,60)(41,96,65)(42,93,66)(43,94,67)(44,95,68)(49,80,100)(50,77,97)(51,78,98)(52,79,99), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108), (2,4)(5,7)(10,12)(13,15)(18,20)(21,23)(26,28)(29,31)(33,35)(37,39)(41,43)(45,47)(49,51)(53,55)(57,59)(62,64)(65,67)(70,72)(73,75)(78,80)(82,84)(86,88)(90,92)(94,96)(98,100)(102,104)(106,108) );

G=PermutationGroup([[(1,56,66),(2,53,67),(3,54,68),(4,55,65),(5,108,96),(6,105,93),(7,106,94),(8,107,95),(9,76,71),(10,73,72),(11,74,69),(12,75,70),(13,37,104),(14,38,101),(15,39,102),(16,40,103),(17,60,79),(18,57,80),(19,58,77),(20,59,78),(21,33,100),(22,34,97),(23,35,98),(24,36,99),(25,91,87),(26,92,88),(27,89,85),(28,90,86),(29,43,82),(30,44,83),(31,41,84),(32,42,81),(45,64,49),(46,61,50),(47,62,51),(48,63,52)], [(1,85,61),(2,86,62),(3,87,63),(4,88,64),(5,10,33),(6,11,34),(7,12,35),(8,9,36),(13,18,41),(14,19,42),(15,20,43),(16,17,44),(21,96,72),(22,93,69),(23,94,70),(24,95,71),(25,52,54),(26,49,55),(27,50,56),(28,51,53),(29,102,78),(30,103,79),(31,104,80),(32,101,77),(37,57,84),(38,58,81),(39,59,82),(40,60,83),(45,65,92),(46,66,89),(47,67,90),(48,68,91),(73,100,108),(74,97,105),(75,98,106),(76,99,107)], [(1,81,6),(2,82,7),(3,83,8),(4,84,5),(9,87,40),(10,88,37),(11,85,38),(12,86,39),(13,72,92),(14,69,89),(15,70,90),(16,71,91),(17,24,48),(18,21,45),(19,22,46),(20,23,47),(25,103,76),(26,104,73),(27,101,74),(28,102,75),(29,106,53),(30,107,54),(31,108,55),(32,105,56),(33,64,57),(34,61,58),(35,62,59),(36,63,60),(41,96,65),(42,93,66),(43,94,67),(44,95,68),(49,80,100),(50,77,97),(51,78,98),(52,79,99)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108)], [(2,4),(5,7),(10,12),(13,15),(18,20),(21,23),(26,28),(29,31),(33,35),(37,39),(41,43),(45,47),(49,51),(53,55),(57,59),(62,64),(65,67),(70,72),(73,75),(78,80),(82,84),(86,88),(90,92),(94,96),(98,100),(102,104),(106,108)]])

D4×C33 is a maximal subgroup of   C3315D8  C3324SD16  C62.100D6

135 conjugacy classes

class 1 2A2B2C3A···3Z 4 6A···6Z6AA···6BZ12A···12Z
order12223···346···66···612···12
size11221···121···12···22···2

135 irreducible representations

dim11111122
type++++
imageC1C2C2C3C6C6D4C3×D4
kernelD4×C33C32×C12C3×C62D4×C32C3×C12C62C33C32
# reps112262652126

Matrix representation of D4×C33 in GL4(𝔽13) generated by

1000
0100
0030
0003
,
1000
0300
0010
0001
,
3000
0300
0010
0001
,
1000
0100
0011
001112
,
12000
01200
0011
00012
G:=sub<GL(4,GF(13))| [1,0,0,0,0,1,0,0,0,0,3,0,0,0,0,3],[1,0,0,0,0,3,0,0,0,0,1,0,0,0,0,1],[3,0,0,0,0,3,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,1,11,0,0,1,12],[12,0,0,0,0,12,0,0,0,0,1,0,0,0,1,12] >;

D4×C33 in GAP, Magma, Sage, TeX

D_4\times C_3^3
% in TeX

G:=Group("D4xC3^3");
// GroupNames label

G:=SmallGroup(216,151);
// by ID

G=gap.SmallGroup(216,151);
# by ID

G:=PCGroup([6,-2,-2,-3,-3,-3,-2,1321]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^4=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽